Neutron Star Cooling n Strong Magnetic Field : Neutrino -Antineutrino Pair Emission and Diret Urca Porcesses

Tomoyuki Maruyama BRS, Nihon University

T.M. et al., PLB805 (2020) 135413, T.M. et al., arXiv:2103.01703

Collaborators

Toshitaka Kajino *Myong-Ki* Cheoun A. Baha Balantekin Grand. J. Mathews Beihang Univ., China Soongsil Univ., Korea Univ . of Wisconsin, USA Univ. of Notre Dome, USA Magnetar Neutron-Star with Strong Magnetic-Field

Very Strong Magnetic Field 1) $B \sim 10^{12-13} \,\mathrm{G}$ Normal Neutron Star

 $B \sim 10^{14-15} \, \mathrm{G}$ (surface) $B \sim 10^{17-19} \, \mathrm{G}$ (insides)

2) Long Spin Period $P = 2 \sim 12 \, s$

Higher Temperature 3) Magnetic Eng. -> Thermal Eng.

4) Emitting High Energy Photons Soft Gamma Repeater (SGR) Anomalous Xray pulsar (AXP)

Neutron Star Cooling

Neutrino Emission \rightarrow Information on Inside of NSs

1) Modified Urca $n + B \rightarrow p + B + e^- + \overline{\nu}$ Neutrino Luminosity $L \propto T^8$

2) Direct Urca $n \rightarrow p + e^- + \bar{\nu}, \ p + e^- \rightarrow n + \nu$ Proton Fraction $x_p > \frac{1}{9}$ $(k_n < k_p + k_e = 2 k_p : \text{Fermi Mom.})$ Neutrino Luminosity $L \propto T^6$

3) neutrino-antineutrino pair emission

 $e^- + B \rightarrow e^- + B + \nu + \overline{\nu}$ (Crust, Low Density Region)

Conditions are determined by Energy Momentum Conservation

In Strong Magnetic Field Momentum Conservation is not necessary Trans. bet. Two Landau Levels give Additional Momentum

The Present Work

In Strong Magnetic Field Transition Between Different Landau Level States

1) $e^- \rightarrow e^- + \nu + \overline{\nu}, \quad p^+ \rightarrow p^+ + \nu + \overline{\nu} \quad (v\overline{v} - pair \ Emission)$

T.M. et al., PLB805 (2020) 135413

2) $n \rightarrow p + e^- + \overline{\nu}$ (DU) Core

T.M. et al., arXiv:2103.01703

Neutron-Star Matter with Strong Mag. Field

Nucleon Mean-Fields RMF Theory

Magnetic Field :
$$\vec{B} = B\hat{z}$$
. $\vec{A} = (0, xB, 0)$

Dirac Eq.

$$\left\{\boldsymbol{\alpha} \cdot (-i\boldsymbol{\nabla} - q\boldsymbol{A}) + \beta(\boldsymbol{M} - \boldsymbol{U}_{s}) + \boldsymbol{U}_{0} + \frac{e\kappa B}{2M}\right\}\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r})$$

U_s:Scalar Mean-Field

 U_0 :Vector Mean-Field

AMM

$$BE = 16 \text{ MeV}, M_N^*/M_N = 0.70,$$

 $K = 200 \text{ MeV}, e_{sym} = 32 \text{ MeV}$
at $\rho_0 = 0.17 \text{ fm}^{-3}$

 e_5

Single Particle Energies and Wave-Functions

Single Particle Energy
 Landau Level Number

$$p \& e$$
 $E(n, p_z, s) = E^* + U_0 = \sqrt{p_z^2 + (\sqrt{2eBn} + M^{*2} + se\kappa B/2M)^2 + U_0}$
 n
 $E(n, p_z, s) = E^* + U_0 = \sqrt{p_z^2 + (\sqrt{p_T^2 + M^{*2}} + se\kappa B/2M)^2 + U_0}$

 Vave-Fuction
 $p \& e$
 $\psi_{n,s,p_z}(\mathbf{r}_1)\overline{\psi}_{n,s,p_z}(\mathbf{r}_2) = \frac{e^{i(p_y y + p_{z^2})}}{\sqrt{R_y R_z}} \hat{F}\left(x_1 - p_y/eB\right)\frac{\rho_M}{4E} \hat{F}\left(x_2 - p_y/eB\right)$
 $\rho_M(n, s, P_z) = \left[E^* \gamma_0 - \zeta \sqrt{2neB} \gamma_2 - p_z \gamma_z + M^* + \frac{e\kappa B}{2M} \Sigma_z\right] \left[1 + \frac{s}{\sqrt{2neB} + M^{*2}} \left(\frac{e\kappa B}{2M} + p_z \gamma_5 \gamma^0 - E^* \gamma_5 \gamma^3\right)\right]$
 \tilde{F}
 $= \operatorname{diag}(f_n, f_{n-1}, f_n, f_{n-1})$
 p

Neutron

XX

$$\psi_{\mathbf{p},\mathbf{s}}(\mathbf{r}_1)\overline{\psi}_{\mathbf{p},\mathbf{s}}(\mathbf{r}_2) = \frac{e^{i\mathbf{p}\cdot(\mathbf{r}_1-\mathbf{r}_2)}}{\sqrt{\Omega}} \left[E^*\gamma_0 - \mathbf{p}\cdot\cdot\boldsymbol{\gamma} + M^* + \frac{e\kappa B}{2M}\Sigma_z \right] \left\{ 1 + \frac{s}{\sqrt{\mathbf{p}_T^2 + M^{*2}}} \left[\frac{e\kappa B}{2M} + \gamma_5 \left(p_z \gamma^0 - E^* \gamma^3 \right) \right] \right\}$$

Decay Width of vv - pair Emission

Total Luminosity

$$L_{\nu\bar{\nu}} = \frac{\pi G_F^2}{8} \sum_{n_i, s_i} \sum_{n_f, s_f} \int \frac{dp_{iz}}{2\pi} \frac{d^3 k_{iz}}{(2\pi)^3} \frac{d^3 k_{fz}}{(2\pi)^3} \frac{N_{\mu\nu} L^{\mu\nu}}{|\mathbf{k}_i| |\mathbf{k}_f| e_i e_f} (|\mathbf{k}_i| + |\mathbf{k}_f|) f(e_i) [1 - f(e_f)] \delta(e_i - e_f - |\mathbf{k}_i| - |\mathbf{k}_f|)$$

Landau Level Transition Energy is kept to be a few MeV

 $\sqrt{eB} = 2.43 \text{MeV}$ when $B = 10^{15} \text{G}$

Low Temperature Expansion (T < < 1)

$$f(e) = \frac{1}{1 + \exp[(e - \mu)/T]} \approx \Theta(e - \mu) + a_C T^2 \delta'(e - \mu)$$

Emitted Particle Energy $\sim T$ (**Temperature**)

In Strong Mag. Fld. $f(e_i) \sim (1 - f(e_f)) \ll 1$ $(e_i - e_f) \gg T$

Neutrino Luminosity in *vv* - pair Emission

Temperature Dependence

 $B = 10^{15} \text{ G}$

EOS:
$$BE = 16 \text{ MeV}, M_N^*/M_N = 0.70,$$

 $K = 200 \text{ MeV}, e_{sym} = 32 \text{ MeV} \text{ at } \rho_0 = 0.17 \text{ fm}^{-3}$

Density Dependence

Effects of Magnetic Fields are Very Large

Neutrino Emissivity

$$\epsilon_{DU} = \frac{457\pi G_F^2}{2^7 \cdot 5040} T^6 \sum_{n_e, n_p} \frac{p_{nT}}{p_{pz} p_{ez} \sqrt{p_{nT}^2 + M_n^{*2}}} \sum_s \sum_{i,j} \int \frac{d\Omega_4}{4\pi} \mathcal{M}(j_1, i_1) \mathcal{M}^*(j_2, i_2) \frac{L_{\mu\nu} N^{\mu\nu}}{e_{\nu}}$$
$$\mathcal{M}(j_p, j_l) = \int dx f_{n_e + (j_l - 1)/2} \left(x + \frac{p_{nT}}{\sqrt{2eB}} \right) f_{n_p + (j_p - 1)/2} \left(x - \frac{p_{nT}}{\sqrt{2eB}} \right),$$
$$f_n(x) : 1 \text{ dim. HO Wave-Function}$$

Nuclear Matter RMF Equations of State

$$\mathcal{L} = \bar{\psi}_N (i\partial - M)\psi_N + g_\sigma \bar{\psi}_N \psi_N \sigma + g_\omega \bar{\psi}_N \gamma_\mu \psi_N \omega^\mu - \frac{C_s^{IV}}{2M^2} (\bar{\psi}_N \tau \psi_N)^2 - \frac{C_v^{IV}}{2M^2} (\bar{\psi}_N \gamma_\mu \tau \psi_N)^2 - \tilde{U}[\sigma] + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu.$$

Two kinds of symmetric force

Lorenz Vector & Scalar

Parameter-Set	C_s^{IV}	C_v^{IV}	L (MeV)
SF1	0	20.42	92.7
SF2	23.61	0	84.1
SF3	33.02	-8.154	81.0

SF1 : Vector Type Sym. Force SF2 : Scalar Type Sy, Force SF3: Negative Vector

Density-Dependence of the Neutrino Emissivity in DU

NS matter consists of n & p & e

Spikes reflect the density of states given by the Landau levels

Neutrinos emitted through Transitions between Landau levels

DU does not appear when B=0

Density & Mag. Fld. Dep. of the Neutrino Emissivity

Summary

Laudau Levels are introduced into Calculations of Neutrino Emissions in Strong Magnetic Field

 $v\bar{v}$ - Pair Emission Energy Loss \gg MU

DU process from NS matter

Three Parameter-sets for Symmetry Energy

Proton Fraction $\leftarrow \rightarrow$ the Neutrino Emissivity.

In the forbidden region $x_p < 1/9$

Mag. Fld. make DU

At Low Temp. Limit, Mag. Effect in DU is not very Large when $x_p < 1/9$. Because of Low Temperature Approximation (?).

 \square

v-Emissivity may become Larger in Exact Calculations

Matter include MuonEmissivity

